Have you no Google?Can someone point me to a thread that explains pf, va and watts. I can't seem to get it right. Thanks!
Can someone point me to a thread that explains pf, va and watts. I can't seem to get it right. Thanks!
PF is the cosine of the impedance angle between Real and Apparant power. So (PF x VA)= Watts.I am trying to figure out the correlation between inductance and motors, and power factor and why VA is higher than Watts.
Basically yes, an inductor resists a change in current flow, the voltage induced opposes the force that created it. Inductive reactance or a lagging PF will cause curent to lag voltage. The opposite is true in a capacitive circuit, or a leading power factor. (ELI the ICE man)Also what is actually hapening to cause the amperage to lag the voltage on time vs magnitude graphs. Is it caused by the magnetic field that builds due to the inductance?
And so many answers, I am trying to explain it as basic as I can. My advice is to read up on the other threads and come back with specific questions.So many questions!
Can someone point me to a thread that explains pf, va and watts. I can't seem to get it right. Thanks!
At the root of it are two basic facts: You cannot instantaneously change the current going through an inductor and you cannot instantaneously change the voltage across the terminals of a capacitor.I am trying to figure out the correlation between inductance and motors, and power factor and why VA is higher than Watts. Also what is actually hapening to cause the amperage to lag the voltage on time vs magnitude graphs. Is it caused by the magnetic field that builds due to the inductance? So many questions!
I think that the most intuitive explanation is with a horse and a track:
To understand power factor, visualize a horse pulling a railroad car down a railroad track. Because
the railroad ties are uneven, the horse must pull the car from the side of the track. The horse is
pulling the railroad car at an angle to the direction of the car?s travel. The power required to move the
car down the track is the working (real) power. The effort of the horse is the total (apparent) power.
Because of the angle of the horse?s pull, not all of the horse?s effort is used to move the car down the
track. The car will not move sideways; therefore, the sideways pull of the horse is wasted effort or
nonworking (reactive) power.
The angle of the horse?s pull is related to power factor, which is defined as the ratio of real (working)
power to apparent (total) power. If the horse is led closer to the center of the track, the angle of side
pull decreases and the real power approaches the value of the apparent power. Therefore, the ratio
of real power to apparent power (the power factor) approaches 1. As the power factor approaches 1,
the reactive (nonworking) power approaches 0.
The problem with analogies is at their heart they are, well... analogies. You can get across a basic understanding of something using an analogy, but the details get messy and diversionary. You can't look at it too closely.Now, explaining electrical equation through dynamics example. Alot of other factors come in consideration like friction force. How you relate this to ( real power ), ( reactive power ) and (apparant power) during pulling.
Isnt it better to explain it through real and imaginary axis.
Vectors can also be assigned to the pulling analogy, too. The difference is electrical power is a circular product by its nature (i.e. by the way it is generated, regarding POCO supplied AC), whereas pulling power is linear (in the example anyway).Now, explaining electrical equation through dynamics example. Alot of other factors come in consideration like friction force. How you relate this to ( real power ), ( reactive power ) and (apparant power) during pulling.
Isnt it better to explain it through real and imaginary axis.
Real power is real axis which is horizontal.
Reactive power is imaginary axis whis vertical.
Apparant power is their magnitude
power factor is the ratio between the real and apparant as well as other relations.
I am trying to figure out the correlation between inductance and motors, and power factor and why VA is higher than Watts. Also what is actually hapening to cause the amperage to lag the voltage on time vs magnitude graphs. Is it caused by the magnetic field that builds due to the inductance? So many questions!
100406-2031 EST
The basic definition of power factor is
PF = POWER/VA
where VA is based on RMS measurement of V and A. Although I have never seen a qualification that the voltage be a sine wave this may be a necessary useful assumption. There may be some logic to a requirement that the voltage be a sine wave. In most practical applications this may be approximately correct. On the other hand currents can be quite distorted.
The above definition says nothing about any angle. Only when you require that both voltage and current be sine waves can one assign any meaning to an angle being uniquely associated with power factor.
.
The angle being refered to has nothing to do with the relationship between voltage and current, that is a differtent topic and is called the phase angle. The angle I was refering to is called the impedance angle and is shown on a power triangle which show the relationship between true, reactive, and apparant power.