Originally posted by fifty60
View Post
3' (1m) is a fairly common rule of thumb for Div 2 hazardous locations. That distance comes up in a lot of standards.
Originally posted by fifty60
View Post
Put another way, it would be a pretty crappy vapor recovery line if it didn't recover all of the vapor - right?
A catastrophic failure of the fill and/or vapor recovery line(s) would probably cause a much larger Div 2 area, and it would probably extend down to grade. Area classifications don't normally take such catastrophic failures into account because (a) they don't happen, and (b) if you assumed they did happen, everything would be a classified area and nobody would be able to do anything, ever.
Given this, most area classifications involving sealed systems presume fugitive emissions + some kind of "small", as-yet-undetected-but-will-be-found-and-fixed-soon leak. Which obviously depends upon the process, pressure, etc.
Originally posted by fifty60
View Post
OK, >maybe< not 15-25'. Though that is what I would start with until I'm convinced otherwise.
The reason is you don't >know< that the leaking vapor is going to go straight down into the pit. Maybe there's a little bit of air movement that pushes it horizontally. Meaning you can never count on the released vapor >only< falling, nor always staying in the pit after it gets in there.
This is why Fig 5.10.4(c) and 5.10.4(d) show hazardous locations extending >above< the leak/emissions points, as well as below. Just because the vapor is a little bit heavier than air doesn't guarantee it's going to >always< settle.
I guess - depending on the situation - that you could argue for a reduced grade-level distance.
I would be worried that the pit would fill up, meaning my default would probably be an additional Div 2 area extending 3' from the edge of the pit, at grade level, 1-3' high. Given the pit is likely at least 3'-6' wide, these additional at-grade border areas would make the total distance 9' to 12'. So I'm not sure you would gain much, if anything, in terms of the height or horizontal distance along grade level.
Yes, it is worst-case. But worst-case is what we should be dealing with, even for Div 2 locations.
Originally posted by fifty60
View Post
Liquids, sure - any released liquids will fall into the pit. But it's the vapors that we are worried about.
This is rather contrived, and the final result will obviously depend upon the actual situation.
If you were willing to put in the work, and depending on the situation, you >may< be able to prove to a reasonably (i.e. very high) level of confidence that the at-grade distance is less than 10'.
I, personally, would probably not bother. It is highly unlikely that anyone would put any electrical equipment anywhere near a tank hazloc that is not dead-smack in the middle of said hazloc. This is because all the action happens either in the tank (where level, pressure and temperature monitors will live) or at the fill points (where transfer, flow, pressure, fuel quality and cross-contamination instruments live). As reducing the hazardous area is unlikely to make any practical difference to anything, why put in the work?
A couple of additional things, just for interests sake:
- The pit would be a classified area, but it would not (usually) need to be monitored nor ventilated unless you want to put electrical equipment in there.
- Ventilating a pit implies forced-air ventilation, in which case (perhaps) the pit is no longer considered a classified area at all.
Leave a comment: