I have to apologize for a serious mistake - I quickly introduced the primary voltage 1.2 kV instead of 12 kV. Now I want to start all over again.
Transformer data check:
12/0.48 kV 150 kVA 3.13% short-circuit impedance p.u.
You need only R and X viewed from low voltage terminals. As I said, the average load losses [from 2350 to 2900 W] it is [2350+2900]/2=2625 W.
Let's revise the theory:
S=sqrt(3)*I*VL_L apparent power
VL_L*vsc=sqrt(3)*I*Zph vsc=short-circuit impedance p.u.
Then:
Zph=VL_L*vsc/(SQRT(3)*I). By multiply up and down by VL_L:
Zph=VL_L^2*vsc/(SQRT(3)*I*VL_L)
Zph=vsc*VL_L^2/S
Then the transformer impedance viewed from low voltage it is:
Zph=0.48^2/0.15*3.13% [voltage in kV, apparent power in MVA]=0.048077 ohm/phase
If ploss=2625 W and Ilv=150000/sqrt(3)/480=180.42 A then:
[TD valign="bottom"]ploss=3*Rlv*Ilv^2[/TD]
[TD valign="bottom"]Rlv=ploss/3/Ilv^2[/TD]
[TD valign="bottom"][/TD]
Rlv=2625/3/180.42^2=0.02688 ohm/phase
Then Xph=sqrt(Zph^2-Rph^2)=sqrt(0.048077^2-0.02688^2)=0.03986 ohm/ph
The ratio X/R=1.483 [it is still odd since usually it has to be 2-7].