211209-1427 EST
FOG1:
You need to study ferro magnetic theory to be able to understand why you see what you describe.
Ferrous magnetic cores in combination with a coil have an electrical characteristic that is known as hysteresis. This shows up as the magnetic flux in the core being different at a certain current input to the coil compared to some other time for the same current.
Where you are on that curve at the time you disconnect power will determine where you stop on the hysteresis curve. Where you are is defined by prior history and when current becomes zero. When you open that switch could be any time. If current is present at the time of switch opening, then by some path ( possibly arcing at the switch contact ) current will continue to flow until stored energy in the magnetic field is dissipated. The energy in the magnetic field has to be expended.
If the switch is next closed at a time that tends to increase core flux in the same direction, then the core will be driven way into saturation compared to an ordinary cycle. This results in a large current pulse. The peak of this pulse occurs at the next voltage zero crossing.
The characteristics of this pulse are in part a result of the shape of the magnetic core material. Going to a core material that increases the efficiency of the transformer probably results in higher magnetizing current at design operating levels.
To experimentally measure magnetizing current probably needs a scope, and experimental efficiency is increased, if you detect the residual flux level and control turn on time of the next test.
Experiments on a small power transformer, 175 kVA at 120 V, produced a peak magnetizing current of about 60 A, but not very often. Full load peak current would be about ( 175/120 ) * ( 1/0.707 ) = 1.46 * 1.414 = 2.06 A. So 60/2.06 = 29. In other words on the first half cycle the peak input current could be 29 times larger than its steady state peak current. this would likely trip a Sq-D breaker.
.