Heat Pipes
As the story goes, it was in 1963 when a Los Alamos National Research Laboratory engineer named George Grover demonstrated the first heat pipe. Heat pipe technology was borrowed from simple heat conducting pipes used by English bakers 100 years ago. Since 1963, heat pipes progressed and modern applications of this technology range from miniature heat pipes for cooling processors inside laptop computers, to groups of half inch diameter and five feet long pipes that will be used in NASA spacecraft, to pipes of two inch diameters (or more) which are used to cool injection molds used in plastic forming. The lengths of the pipes can vary from inches to 24 feet or more.
A lithium filled heat pipe developed at Los Alamos in the mid 1980s transferred heat energy at a power density of 23 kilowatts per square centimeter. If you consider that the heat emitted from the sun's surface is roughly six kilowatts per square centimeter, you begin to realize the enormous heat transferring capacity of the heat pipe.
How It Works:
Heat pipes are generally composed of a tube, closed on each end, with fluid in it. One end takes in heat and the other expels it. The heat entering the "hot" end of the tube boils the liquid which turns it into a vapor. The vapor expands in volume and travels to the "cold" end where it condenses to a liquid and gives up its heat. The fluid is then returned to the hot end by gravity or a wick and starts the process again. The working fluid can be water in a negative pressure atmosphere or a fluid, such as freon, which is pressurized to maintain its fluid state.
Ideally there would be no temperature difference between the hot and cold ends regardless of what the rate of heat transfer is. However, there are physical limits to the rate of heat flow that can be transferred for a given temperature difference between the hot and cold ends. The heat must conduct through several interfaces and conditions. This includes heat transferred through varying thickness of the pipe walls, the thermal path of the liquid before it boils and after it condenses, and pressure differences between the hot and cold ends caused by aerodynamic friction. A professionally manufactured heat pipe can have a delta T as low as 2?F (1?C). However, with my rather crude building methods, I would consider a delta T of 10?F (5.6?C) a success.