210221-1645 EST
ptonsparky:
Following are some results of experiments at my home:
My pole transformer is a 50 kVA 240 V center tapped single phase fed from a 3 phase delta. About 90 ft of service drop wire. 50 to 60 ft is wimpy, and the remainder 0000 copper. My main panel is a 200 A SqD with copper bus bars. My electric meter is a bolt on vs plugin.
My measuring instruments are a Fluke 27 with MIN-MAX, a Rigol scope, and a Fluke 200 A Hall current probe. Test loads are 1500 W 120 V space heater, a Montgomery Ward 1/3 HP 120 V AC induction motor with no external mechanical load, and a 15 W 120 V incandescent bulb.
Space heater at main panel ---
Heater is switched on phase 2. Voltage measured at the main lugs at the panel input.
Phase 1 voltage changes from 123.6 to 123.9, a +0.3 V change, with the about 12.5 A load change.
Phase 2 voltage changes from 123.6 to 122.9, a -0.7 V change, with the about 12.5 A load change.
These changes make sense. Think about the actual circuit from the pole.
Space heater is now at the end of a 50 ft run, from the main panel, of #14 copper Romex ---
Heater is still on phase 2 and no need to measure change of phase 1.
Phase 2 voltage change at the end of the 50 ft run is from 123.0 to 118.0, a 5.0 V change, with about 12 A load change.
Very little flicker in the 15 W bulb at the end of the 50 ft Romex.
Note: that unloaded initial voltage changes somewhat because the power company primary supply has voltage changes from other users load changes, or even other changes within your home. What we are interested in is the change in voltage that results from our load change. Thus. one has to wait sometimes to see that input voltage is moderately stable, and hope it is stable during your experiment.
Next we look at results from motor starting.
Fluke measurement.
The 1/3 HP motor is switched at the end of the 50 ft Romex ---
Fluke measurement in MIN-MAX mode is 122.9 V dropping to 119.9V, a 3.0 V change. Load change is 50 A. Doesn't seem to correlate. Reason is the Fluke does not respond fast enough.
Scope measurement.
The 1/3 HP motors is switched at the end of the 50 ft Romex ---
Peak voltages and currents were measured. Calculated RMS values are shown. Obviously reading of scope produces some errors.
The starting current duration was 5 cycles of 16.7 mS each, and a 1 cycle transition to turn off of the starting coil. So we will call starting duration as 6 * 1/60 = 0.1 second.
Voltage before start is 180 * 0.707 = 127.3 V. During start this drops to 160 * 0.707 = 113.1 V. Thus, a voltage change of 14.2 V. There is very apparent flicker of the 15 W incandescent.
This should be enough for now. If we knew more from the original poster it should be possible to help him find his problem.
.
WITH NO EXTERNAL MECHANICAL LOAD, 4444