It's an interesting thought experiment. I am by no means saying I have this correct, so please correct me if I have any of this fundamentally wrong:
Initially, as charges begin to move around the battery, capacitive coupling occurs with the wire 1 m away. This broadly results in negative charge on the positive terminal of the bulb since the positively charged wire around the battery is closest to the wire on the positive side of the bulb. The opposite happens on the negative side of the battery and the negative side of the bulb. This actually causes localized current to flow in the reverse direction across the bulb than would would normally occur. This capacitance forms based on the time constant of the two-wire capacitor as the electric fields are formed across the 1 m gap (starts forming at t = 1/c). As the charges move along the light-second long wire away from the battery at some fraction of the speed of light, the capacitance propagates down the length of the wires, continuing to cause current to flow in the opposite direction from the negative terminal of bulb to the positive terminal. The interesting thing happens when the positive charges from the battery encounter the capacitively-formed negative charges from the opposing wire. The capacitive effects break down and the positive charge propagation from the battery along the wire overcomes the capacitively-formed negative charge in the wire and starts to result in current flow in the expected direction.
Initially, as charges begin to move around the battery, capacitive coupling occurs with the wire 1 m away. This broadly results in negative charge on the positive terminal of the bulb since the positively charged wire around the battery is closest to the wire on the positive side of the bulb. The opposite happens on the negative side of the battery and the negative side of the bulb. This actually causes localized current to flow in the reverse direction across the bulb than would would normally occur. This capacitance forms based on the time constant of the two-wire capacitor as the electric fields are formed across the 1 m gap (starts forming at t = 1/c). As the charges move along the light-second long wire away from the battery at some fraction of the speed of light, the capacitance propagates down the length of the wires, continuing to cause current to flow in the opposite direction from the negative terminal of bulb to the positive terminal. The interesting thing happens when the positive charges from the battery encounter the capacitively-formed negative charges from the opposing wire. The capacitive effects break down and the positive charge propagation from the battery along the wire overcomes the capacitively-formed negative charge in the wire and starts to result in current flow in the expected direction.