Example
A 240-volt, single-phase, 250-ampere load is supplied from a 300-ampere breaker located in a panelboard 500 ft away. The conductors are 250 kcmil copper, installed in rigid nonmetallic conduit, with a 4 AWG copper equipment grounding conductor. If the conductors are increased to 350 kcmil, to what size must the equipment grounding conductor be increased?
Solution
Step 1.
Calculate the size ratio of the new conductors to the existing conductors:
Size Ratio= new size circuit conductor / old size circuit conductor.
350,000 / 250,000 = 1.4
Step 2.
Calculate the cross-sectional area of the new equipment grounding conductor. According to Chapter 9, Table 8, 4 AWG, the size of the existing grounding conductor has a cross-sectional area of 41,740 circular mils.
Step 3.
Determine the size of the new equipment grounding conductor. Again, referring to Chapter 9, Table 8, we find that 58,436 circular mils is larger than 3 AWG. The next larger size is 66,360 circular mils, which converts to a 2 AWG copper equipment grounding conductor.