For Transposed, balanced lines we know:
L = circuit length in miles
D_ij = Distance from i conductor to j conductor (ft)
D_eq = 3√(Dab * Dbc * Dca)
r = resistance of i conductor (Ω/mi)
GMR = Geometric mean radius of conductor (ft)
Z = r + j 0.1213416789 * ln(D_eq / GMR) _Ω/mi
Vsource_L-G = source voltage line to ground
I = load amps
ΔV_L-G = L * Z * I = voltage drop
VLoad_L-G = VSource_L-G - ΔV_L-G = Load voltage
Case 1: 90% power factor- 556.5 Hendrix- 300amps- 33,000 volts, L=3 miles, 30°C, D_AB = 0.958333, D_BC = 0.958333, D_AC = 0.958333, R = 0.1713014, GMR = 0.0261980
We find:
D_eq = 0.958333 ft
Z = 0.1713014 + j 0.436375 (or 0.468794 <68.57°) _Ω/mi
Vsource_L-G = 19,052.5589+ j 0 (or 19,052.5589 <0.00°) volts
I = 270+ j -130.7670 (or 300 <-25.84°) amps
ΔV_L-G = 309.9445+ j 286.2621 (or 421.9142 <42.73°) = 2.21%
VLoad_L-G = 18,742.6144+ j -286.2621 (or 18,744.8004 <-0.88°)
Case 2: 90% power factor- 556.5 ACSR on crossarms - 300amps- 33,000 volts, L=3 miles, 30°C, D_AB = 3.96162, D_BC = 3.96162, D_AC = 7.33333, r = 0.1717333, GMR = 0.0314
We find:
D_eq = 4.864249 ft
Z = 0.1717333 + j 0.611354 (or 0.635017 <74.31°) _Ω/mi
Vsource_L-G = 19,052.5589+ j 0 (or 19,052.5589 <0.00°) volts
I = 270+ j -130.7670 (or 300 <-25.84°) amps
ΔV_L-G = L * Z * I = 378.9389+ j 427.8259 (or 571.5152 <48.47°) = 3.00%
VLoad_L-G = VSource_L-G - ΔV_L-G = 18,673.6200+ j -427.8259 (or 18,678.5203 <-1.31°)